

Particles, Strings, and the Early Universe Collaborative Research Center SFB 676

Gröbner Bases IV: Applications

Alexander Haupt

13 June 2016

Slides available at: bit.ly/lt0Ubp3
Primary refs.:
[1] Cox, Little, O'Shea, "Ideals, Varieties, and Algorithms," (2015)
[2] Cox, Little, O'Shea, "Using Algebraic Geometry," (2005)

Summary of previous talk

Definition 3 (S-polynomial)

The S-polynomial of f and g: $S(f,g) = \frac{x^{\gamma}}{\mathsf{LT}(f)} \cdot f - \frac{x^{\gamma}}{\mathsf{LT}(g)} \cdot g$.

("Designed" to produce cancellation of leading terms)

S-pair criterion

Let *I* be a polynomial ideal. Then a basis $G = \{g_1, \ldots, g_t\}$ of *I* is a GB of *I* iff: $\overline{S(g_i, g_j)}^G = 0$ $\forall i \neq j$

 \rightarrow Buchberger's Algorithm (successively add nonzero remainders $\overline{S(f_i, f_j)}^G$ to G until S-pair criterion satisfied)

Definition 4

A reduced GB for a polynomial ideal I is a GB G for I s.t.:

(i)
$$\mathsf{LC}(p) = 1$$
 for all $p \in G$.

(ii) For all $p \in G$, no monomial of p lies in $\langle LT(G \setminus \{p\}) \rangle$.

(Always exists and unique)

Part 3: How can it be useful?

• Ideal membership problem: \checkmark

(1. find GB G, 2. use Cor. 2, i.e. $f \in I \Leftrightarrow \overline{f}^G = 0$)

- Proving that polynomials have no common roots: √

 find GB G, 2. no common roots iff 1 ∈ G)
 (e.g. reduced GB of ⟨x + y, x² − 1, y² − 2x⟩ is {1})
- Ideal Equality Algorithm: √ ({f₁,..., f_s} and {g₁,..., g_t} generate same ideal iff they have same reduced GB for fixed monomial ordering)
- Next:
 - $\textbf{O} \textbf{ Solving Polynomial Equations} (\rightarrow \textsf{Elimination Theory})$
 - 2 Implicitization Problem

Solving Polynomial Equations Elimination Theory Implicitization Problem Complexity Issues

• Back to our very first example: What are the solutions of the following system of polynomial eqs.?

 $3x^{2} + 2yz - 2wx = 0,$ 2xz - 2wy = 0, 2xy - 2z - 2wz = 0, $x^{2} + y^{2} + z^{2} - 1 = 0.$ (1)

- Consider ideal $I = \langle 3x^2 + 2yz 2wx, 2xz 2wy, 2xy 2z 2wz, x^2 + y^2 + z^2 1 \rangle$
- Let's **compute a reduced GB** of *I* for lex order with w > x > y > z.
- \bullet E.g. use Mathematica's GroebnerBasis (running time <0.005~s)

Solving Polynomial Equations Elimination Theory Implicitization Problem Complexity Issues

$$\begin{split} & w - \frac{3}{2}x - \frac{3}{2}yz - \frac{167616}{3835}z^6 + \frac{36717}{590}z^4 - \frac{134419}{7670}z^2, \\ & x^2 + y^2 + z^2 - 1, \\ & xy - \frac{19584}{3835}z^5 + \frac{1999}{295}z^3 - \frac{6403}{3835}z, \\ & xz + yz^2 - \frac{1152}{3835}z^5 - \frac{108}{295}z^3 + \frac{2556}{3835}z, \\ & y^3 + yz^2 - y - \frac{9216}{3835}z^5 + \frac{906}{295}z^3 - \frac{2562}{3835}z, \\ & y^2z - \frac{6912}{3835}z^5 + \frac{827}{295}z^3 - \frac{3839}{3835}z, \\ & yz^3 - yz - \frac{576}{59}z^6 + \frac{1605}{118}z^4 - \frac{453}{118}z^2, \\ & z^7 - \frac{1763}{1152}z^5 + \frac{655}{1152}z^3 - \frac{11}{288}z. \end{split}$$

- Looks like a horrible mess (Note: coefficients of elements of GB can be **significantly messier** than coefficients of original generating set.)
- However, last polynomial **depends only on** *z* (i.e. "eliminated" other variables):

$$g_8 = z^7 - \frac{1763}{1152}z^5 + \frac{655}{1152}z^3 - \frac{11}{288}z$$

• Miraculously, this factorizes into

$$\frac{1}{1152}z(z+1)(z-1)(3z+2)(3z-2)(128z^2-11)$$

• So, setting $g_8 = 0$ leads to "simple" solutions:

$$z = 0, \pm 1, \pm 2/3, \pm \sqrt{11}/(8\sqrt{2})$$

• Setting z equal to each of these values in turn, the remaining eqs. can be solved successively for y, x and w

Solving Polynomial Equations Elimination Theory Implicitization Problem Complexity Issues

In total 10 solutions:

<i>z</i> = 0;	<i>y</i> = 0;	<i>x</i> = 1;	w = 3/2,
<i>z</i> = 0;	<i>y</i> = 0;	x = -1;	w = -3/2,
<i>z</i> = 0;	$y = \pm 1;$	<i>x</i> = 0;	w = 0,
$z=\pm 1;$	<i>y</i> = 0;	<i>x</i> = 0;	w = -1,
z = 2/3;	y = 1/3;	x = -2/3;	w = -4/3,
z = -2/3;	y = -1/3;	x = -2/3;	w = -4/3,
$z=\sqrt{11}/(8\sqrt{2});$	$y = -3\sqrt{11}/(8\sqrt{2});$	x = -3/8;	w = 1/8,
$z=-\sqrt{11}/(8\sqrt{2});$	$y = 3\sqrt{11}/(8\sqrt{2});$	x = -3/8;	w = 1/8.

• If you run in Mathematica

I={3x^2+2yz-2wx, 2xz-2wy, 2xy-2z-2wz, x^2+y^2+z^2-1}; Solve[I == 0, {w, x, y, z}]

this is exactly the output you get

- And this is what Mathematica is doing for you in the background
- So, chances are you've already **unknowingly used GB techniques** (e.g. in Mathematica, Maple, ...)!

Observations:

- GB w.r.t. lex order simplifies form of eqs. considerably.
- In particular, get eqs. where variables are **eliminated** successively.
- Also, note: order of elimination seems to correspond to ordering of the variables.
- E.g. in example, w > x > y > z and in GB w is eliminated first, x second, and so on.
- Easy to solve (last eq. contains only one variable) \rightarrow successively apply one-variable techniques
- Note the analogy between this procedure and the method of "back-substitution" used to solve a linear system in triangular form.

- What enabled us to find these solutions? There were two things that made our success possible:
 - (Elimination Step) We could find a consequence $g_8 = 0$ of original eqs. which involved only z (i.e. eliminated x, y and w from system of eqs).
 - (Extension Step) Once we solved the simpler eq. $g_8 = 0$ to determine the values of z, we could extend these solutions to solutions of the original eqs.
- Basic idea of elimination theory: both Elimination Step and Extension Step can be done in great generality
- Indeed, notice that our observation concerning g₈ can be written as g₈ ∈ I ∩ C[z]
- In fact, I ∩ C[z] consists of all consequences of our eqs.
 which eliminate x, y and w.

• These observations can be generalized:

Definition 5

Given $I = \langle f_1, \ldots, f_s \rangle \subseteq k[x_1, \ldots, x_n]$, the ℓ -th elimination ideal I_ℓ is the ideal of $k[x_{\ell+1}, \ldots, x_n]$ defined by

$$I_{\ell} = I \cap k[x_{\ell+1}, \ldots, x_n].$$

- I_{ℓ} consists of **all consequences** of $f_1 = \ldots = f_s = 0$ which eliminate the variables x_1, \ldots, x_{ℓ} .
- Note that **different orderings** of the variables lead to **different elimination ideals**.

Solving Polynomial Equations Elimination Theory Implicitization Problem Complexity Issues

Elimination Theorem

Let $I \subseteq k[x_1, ..., x_n]$ be an ideal and let G be a GB of I w.r.t. lex order where $x_1 > x_2 > \cdots > x_n$. Then, for every $0 \le \ell \le n$, the set

$$G_{\ell} = G \cap k[x_{\ell+1}, \ldots, x_n]$$

is a GB of the ℓ -th elimination ideal I_{ℓ} .

 $\bullet\,$ E.g. consider eq-sys (1) again. From Elimination Theorem

$$I_3 = I \cap \mathbb{C}[z] = \langle z^7 - \frac{1763}{1152}z^5 + \frac{655}{1152}z^3 - \frac{11}{288}z \rangle =: \langle g_8 \rangle$$

- Thus, g₈ is not random → best possible way (any other polynomial that eliminates x, y and w is a multiple of g₈)
- GB for **lex order** eliminates not only the first variable, but also the first two variables, the first three variables, etc.

Next extend partial solution to full solution

Definition 6 (Ideal variety)

Let
$$I \subseteq k[x_1, \ldots, x_n]$$
 be an ideal. We will denote by $V(I)$ the set
 $V(I) = \{(a_1, \ldots, a_n) \in k^n | f(a_1, \ldots, a_n) = 0 \text{ for all } f \in I\}.$

- partial solution : $\Leftrightarrow (a_{\ell+1}, \ldots, a_n) \in V(I_{\ell})$
- Now, extend $(a_{\ell+1}, \ldots, a_n)$ to a complete solution in V(I)
 - add one more coordinate to the solution, i.e. find a_{ℓ} s.t. $(a_{\ell}, a_{\ell+1}, \dots, a_n) \in V(I_{\ell-1})$
 - suppose that $I_{\ell-1} = \langle g_1, \dots, g_r \rangle$ in $k[x_\ell, x_{\ell+1}, \dots, x_n]$. Want to find solutions $x_\ell = a_\ell$ of

$$g_1(x_\ell,a_{\ell+1},\ldots,a_n)=\cdots=g_r(x_\ell,a_{\ell+1},\ldots,a_n)=0.$$

- polynomials of one variable x_ℓ ⇒ possible a_ℓ's: roots of the gcd of the above r polynomials
- basic problem: above polynomials may not have a common root (i.e. partial solution may not extend to complete solution)

Solving Polynomial Equation Elimination Theory Implicitization Problem Complexity Issues

The following theorem tells us when this can be done:

Extension Theorem

Let $I = \langle f_1, \ldots, f_s \rangle \subseteq \mathbb{C}[x_1, \ldots, x_n]$ and let I_1 be the first elimination ideal of I. For each $1 \leq i \leq s$, write f_i in the form

$$f_i = c_i(x_2, \ldots, x_n) x_1^{N_i}$$
 + terms in which x_1 has degree $< N_i$,

where $N_i \ge 0$ and $c_i \in \mathbb{C}[x_2, \ldots, x_n]$ is nonzero. Suppose that we have a partial solution $(a_2, \ldots, a_n) \in V(I_1)$. If $(a_2, \ldots, a_n) \notin V(c_1, \ldots, c_s)$, then there exists $a_1 \in \mathbb{C}$ s.t. $(a_1, a_2, \ldots, a_n) \in V(I)$.

Note: $k = \mathbb{C}$ (in fact, Extension Theorem is false over \mathbb{R}), more generally need an **algebraically closed field** k here.

Solving Polynomial Equations Elimination Theory Implicitization Problem Complexity Issues

- Some more examples (revealing caveats):
- Consider $I = \langle xy 4, x^3 y^2 1 \rangle$.
 - Compute GB G for lex order with x > y:

$$\{16x - y^4 - y^2, y^5 + y^3 - 64\}$$

- Second polynomial, $y^5 + y^3 64$, has **no** rational roots.
- No closed form expressions. E.g. using Mathematica's Solve[]:

$$\{\texttt{y} \rightarrow \texttt{Root[-64+\#1^3+\#1^5\&,1]}, \ldots\}$$

• Can only find numerical approximations:

x = 1.80699, y = 2.21363;

 $x = -1.38823 \pm 1.08623i$, $y = -1.78719 \pm 1.3984i$;

 $x = 0.484732 \mp 1.61705i$, $y = 0.680372 \pm 2.26969i$

• Finite numerical precision can lead to subtle problems

2 Twisted cubic again. GB for lex order with x > y > z

$$I = \langle x^2 - y, xy - z, xz - y^2, y^3 - z^2 \rangle$$

• Elimination ideals

$$I_1 = I \cap \mathbb{C}[y, z] = \langle y^3 - z^2 \rangle = \langle g_4 \rangle,$$

$$I_2 = I \cap \mathbb{C}[z] = \langle 0 \rangle.$$

- So $V(I_2) = \mathbb{C}$ (i.e. every $a_3 \in \mathbb{C}$ is a partial solution).
- Which partial solutions $a_3 \in \mathbb{C}$ extend to $(a_1, a_2, a_3) \in V(I)$?
- Note: I_2 is elimination ideal of I_1
- Coefficient of y³ in g₄ is 1, so c₁ = 1. Extension Thm says that solution extends to (a₂, a₃) ∈ V(I₁) if a₃ ∉ V(1) = Ø. So, it extends ∀a₃ ∈ C
- Leading x-coefficients in remaining polynomials g₁,..., g₃ are 1, y and z. Since 1 never vanishes, the Extension Thm guarantees that a₃ ∈ C always exists.
- New: free parameter $a_3 \in \mathbb{C} \to$ Implicitization Problem

Solving Polynomial Equations Elimination Theory Implicitization Problem Complexity Issues

Points in twisted cubic variety V(y - x², z - x³) can be parameterized by setting x = t in y - x² = z - x³ = 0:

$$(x,y,z)=(t,t^2,t^3)$$

• This is used e.g. in plotting the graph of the twisted cubic:

- Inverse direction known as Implicitization Problem:
- Given a set of parametric equations (here: polynomials),

$$x_1 = f_1(t_1, \ldots, t_m),$$

:

$$x_n = f_n(t_1,\ldots,t_m),$$

defining a subset of an algebraic variety V in k^n .

• How can we find polynomial equations in the x_i that define V?

- Basic idea: **eliminate** the variables t_1, \ldots, t_m using GB
- We will take the **lex order** in $k[t_1, \ldots, t_m, x_1, \ldots, x_n]$ defined by the variable ordering

$$t_1 > \cdots > t_m > x_1 > \cdots > x_n.$$

• Now suppose we have a GB of the ideal

$$\tilde{I} = \langle x_1 - f_1, \ldots, x_n - f_n \rangle.$$

- Since we are using lex order, we expect the GB to have polynomials that eliminate variables, and t_1, \ldots, t_m should be eliminated first since they are biggest in our monomial order.
- Thus, the GB for *l* should contain polynomials that only involve x₁,..., x_n → candidates for the equations of V.

Solving Polynomial Equations Elimination Theory Implicitization Problem Complexity Issues

Example: Parameterized twisted cubic curve *V*: $(x, y, z) = (t, t^2, t^3)$ Compute GB of $\tilde{l} = \langle t - x, t^2 - y, t^3 - z \rangle$ for lex order in $\mathbb{C}[t, x, y, z]$:

$$\{y^3 - z^2, -y^2 + xz, xy - z, x^2 - y, t - x\}$$

From Elimination Thm:

$$\tilde{l}_1 = \tilde{l} \cap \mathbb{C}[x, y, z] = \langle y^3 - z^2, -y^2 + xz, xy - z, x^2 - y \rangle$$

Thus $V \subseteq V(y^3 - z^2, -y^2 + xz, xy - z, x^2 - y)$. However, difficult and more work required to decide whether

$$V = V(y^3 - z^2, -y^2 + xz, xy - z, x^2 - y)$$

→ Geometry of Elimination (not considered here)

Solving Polynomial Equations Elimination Theory Implicitization Problem Complexity Issues

- Even with best currently known versions of the algorithm:
- Many examples of ideals for which the computation of a GB takes a tremendously long time and/or consumes a huge amount of storage space
- Several reasons
 - total degrees of intermediate polynomials can be quite large
 - Coefficients in GB can be **quite complicated** rational numbers, even when the coefficients of the original ideal generators were small integers
- $\bullet \rightarrow$ search for $upper \ bounds$ on complixity of computation
- measure to what extent GB techniques will continue to be **tractable** as larger and larger problems are attacked

How can it be useful?	Solving Polynomial Equations	
	Elimination Theory	
	Implicitization Problem	
	Complexity Issues	

- Bounds on degrees of generators in a GB are quite large
- E.g. Mayr and Meyer (1982): ideal generated by polynomials of degree less than or equal to some *d* can involve polynomials of degree proportional to 2^{2^d}
- 2^{2^d} grows very rapidly as $d \to \infty!$
- E.g. GB of $I = \langle x^{n+1} yz^{n-1}w, xy^{n-1} z^n, x^nz y^nw \rangle$ for grevlex order with x > y > z > w (Mora (1983)): reduced GB contains the polynomial $z^{n^2+1} y^{n^2}w$.
- However, experience shows that "on average" computations often much more manageable than in worst cases
- Experimentation with **changes of variables** and varying the **ordering of the variables** often can reduce the difficulty of the computation drastically
- in most cases, **grevlex** order produces GB with polynomials of the **smallest total degree** (Bayer and Stillmann (1987a))

Take home message (regarding Complexity Issues)

- Lex ordering very useful for solving system of polynomials
- But: lex ordering can be very computationally intensive!
- Hence, always choose the monomial ordering wisely
- It should be adapted to the problem at hand (lex ordering not always needed)
- E.g. for implicitization problem it's overkill (elimination order suffices)
- Also not needed for deciding whether $V(I) \subseteq k^n$ is a finite set
- (Lex ordering s.t. x₁ > ··· > x_n is an elimination ordering for every partition {x₁,...,x_k}, {x_{k+1},...,x_n}. Thus a GB for this ordering carries much more information than usually necessary. This may explain why GB for lex ordering are usually the most difficult to compute.)

- What to do if lex ordering is still needed (e.g. for solving polynomial equations)?
- Question Clever trick: compute GB for another monomial ordering (grevlex often fastest) and then do a "basis conversion" (→ FGLM basis conversion algorithm, Gröbner Walk)
- Instead of Buchberger's algorithm, use a more advanced algorithm to compute GB
 (→ Faugère F4, F5)
 - Most modern **computer algebra systems** (e.g. Maple, Magma, Singula, Sage, Macaulay2) feature implementations of various versions and combinations of 1) and 2)

Thank you for your attention.

Slides available at: bit.ly/1t0Ubp3

Backup slides

Example (1): GB for grlex order (running time 0.002 s)

$$x^{2} + y^{2} + z^{2} - 1,$$

$$wz - xy + z,$$

$$wy - xz,$$

$$2wx + 3y^{2} - 2yz + 3z^{2} - 3,$$

$$- xy + 17xz + 17yz^{2} - 13z^{3} + 13z,$$

$$- 6xy + 17y^{2}z + 7z^{3} - 7z,$$

$$- 7xy - 17xz + 17y^{3} - 17y + 11z^{3} - 11z,$$

$$12w^{2} + 10w + 24xz^{2} - 15x + 27y^{2} + 9yz + 25z^{2} - 27,$$

$$12w^{2} + 2w + 24xyz - 3x + 27y^{2} - 3yz + 17z^{2} - 27,$$

$$12w^{2} + 10w + 24xy^{2} - 15x + 27y^{2} - 15yz + 25z^{2} - 27,$$

$$12w^{3} - 23w - 6x - 6yz - 11z^{2},$$

$$1164w^{2} + 466w - 699x + 2619y^{2} - 699yz + 1152z^{4} + 769z^{2} - 2619.$$

(Note: 12 instead of 8 polynomials; all mixed)

Example (1): GB for grevlex order (running time 0.002 s)

-wz + xy - z, WV - XZ, $x^2 + y^2 + z^2 - 1$. $2wx + 3v^2 - 2vz + 3z^2 - 3$ $-wz + 17xz + 17vz^2 - 13z^3 + 12z$. $12w^{2} + 10w + 24xz^{2} - 15x + 27v^{2} + 9vz + 25z^{2} - 27$ $12w^{2} + 24wz^{2} + 2w - 3x + 27v^{2} - 3vz + 41z^{2} - 27$ $-6wz + 17v^2z + 7z^3 - 13z$. $17w^2z + 23wz + 10z^3 - 4z$. $-7wz - 17xz + 17v^3 - 17v + 11z^3 - 18z$. $12w^3 - 23w - 6x - 6vz - 11z^2$. $1164w^{2} + 466w - 699x + 2619v^{2} - 699vz + 1152z^{4} + 769z^{2} - 2619.$ (Note: 12 instead of 8 polynomials; all mixed)