
Gröbner Bases IV: Applications

Alexander Haupt

13 June 2016

Slides available at: bit.ly/1t0Ubp3

Primary refs.:

[1] Cox, Little, O’Shea, “Ideals, Varieties, and Algorithms,” (2015)

[2] Cox, Little, O’Shea, “Using Algebraic Geometry,” (2005)



Summary of previous talk

Definition 3 (S-polynomial)

The S-polynomial of f and g : S(f , g) = xγ

LT(f ) · f −
xγ

LT(g) · g .

(“Designed” to produce cancellation of leading terms)

S-pair criterion

Let I be a polynomial ideal. Then a basis G = {g1, . . . , gt} of I is

a GB of I iff: S(gi , gj)
G

= 0 ∀i 6= j

→ Buchberger’s Algorithm (successively add nonzero remainders

S(fi , fj)
G

to G until S-pair criterion satisfied)

Definition 4

A reduced GB for a polynomial ideal I is a GB G for I s.t.:

(i) LC(p) = 1 for all p ∈ G .

(ii) For all p ∈ G , no monomial of p lies in 〈LT(G\{p})〉.

(Always exists and unique)
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Ideal membership problem: X

(1. find GB G , 2. use Cor. 2, i.e. f ∈ I ⇔ f
G

= 0)

Proving that polynomials have no common roots: X
(1. find GB G , 2. no common roots iff 1 ∈ G )
(e.g. reduced GB of 〈x + y , x2 − 1, y2 − 2x〉 is {1})
Ideal Equality Algorithm: X
({f1, . . . , fs} and {g1, . . . , gt} generate same ideal iff they
have same reduced GB for fixed monomial ordering)

Next:
1 Solving Polynomial Equations (→ Elimination Theory)
2 Implicitization Problem
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Back to our very first example: What are the solutions of
the following system of polynomial eqs.?

3x2 + 2yz − 2wx = 0,

2xz − 2wy = 0, (1)

2xy − 2z − 2wz = 0,

x2 + y2 + z2 − 1 = 0.

Consider ideal
I = 〈3x2+2yz−2wx , 2xz−2wy , 2xy−2z−2wz , x2+y2+z2−1〉
Let’s compute a reduced GB of I for lex order with
w > x > y > z .

E.g. use Mathematica’s GroebnerBasis (running time
< 0.005 s)
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Looks like a horrible mess (Note: coefficients of elements of
GB can be significantly messier than coefficients of original
generating set.)

However, last polynomial depends only on z (i.e.
“eliminated” other variables):

g8 = z7 − 1763

1152
z5 +

655

1152
z3 − 11

288
z

Miraculously, this factorizes into

1

1152
z(z + 1)(z − 1)(3z + 2)(3z − 2)(128z2 − 11)

So, setting g8 = 0 leads to “simple” solutions:

z = 0, ±1, ±2/3, ±
√

11/(8
√

2)

Setting z equal to each of these values in turn, the remaining
eqs. can be solved successively for y , x and w
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In total 10 solutions:

z = 0; y = 0; x = 1; w = 3/2,

z = 0; y = 0; x = −1; w = −3/2,

z = 0; y = ±1; x = 0; w = 0,

z = ±1; y = 0; x = 0; w = −1,

z = 2/3; y = 1/3; x = −2/3; w = −4/3,

z = −2/3; y = −1/3; x = −2/3; w = −4/3,

z =
√

11/(8
√

2); y = −3
√

11/(8
√

2); x = −3/8; w = 1/8,

z = −
√

11/(8
√

2); y = 3
√

11/(8
√

2); x = −3/8; w = 1/8.
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If you run in Mathematica

I={3x^2+2yz-2wx, 2xz-2wy, 2xy-2z-2wz, x^2+y^2+z^2-1};
Solve[I == 0, {w, x, y, z}]

this is exactly the output you get

And this is what Mathematica is doing for you in the
background

So, chances are you’ve already unknowingly used GB
techniques (e.g. in Mathematica, Maple, ...)!
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Observations:

GB w.r.t. lex order simplifies form of eqs. considerably.

In particular, get eqs. where variables are eliminated
successively.

Also, note: order of elimination seems to correspond to
ordering of the variables.

E.g. in example, w > x > y > z and in GB w is eliminated
first, x second, and so on.

Easy to solve (last eq. contains only one variable) →
successively apply one-variable techniques

Note the analogy between this procedure and the method of
“back-substitution” used to solve a linear system in
triangular form.
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What enabled us to find these solutions? There were two
things that made our success possible:

(Elimination Step) We could find a consequence g8 = 0 of
original eqs. which involved only z (i.e. eliminated x , y and w
from system of eqs).
(Extension Step) Once we solved the simpler eq. g8 = 0 to
determine the values of z , we could extend these solutions to
solutions of the original eqs.

Basic idea of elimination theory: both Elimination Step and
Extension Step can be done in great generality

Indeed, notice that our observation concerning g8 can be
written as g8 ∈ I ∩ C[z ]

In fact, I ∩ C[z ] consists of all consequences of our eqs.
which eliminate x , y and w .
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These observations can be generalized:

Definition 5

Given I = 〈f1, . . . , fs〉 ⊆ k[x1, . . . , xn], the `-th elimination ideal I`
is the ideal of k[x`+1, . . . , xn] defined by

I` = I ∩ k[x`+1, . . . , xn].

I` consists of all consequences of f1 = . . . = fs = 0 which
eliminate the variables x1, . . . , x`.

Note that different orderings of the variables lead to
different elimination ideals.



How can it be useful?

Solving Polynomial Equations
Elimination Theory
Implicitization Problem
Complexity Issues

Elimination Theorem

Let I ⊆ k[x1, . . . , xn] be an ideal and let G be a GB of I w.r.t. lex
order where x1 > x2 > · · · > xn. Then, for every 0 ≤ ` ≤ n, the set

G` = G ∩ k[x`+1, . . . , xn]

is a GB of the `-th elimination ideal I`.

E.g. consider eq-sys (1) again. From Elimination Theorem

I3 = I ∩ C[z ] = 〈z7 − 1763

1152
z5 +

655

1152
z3 − 11

288
z〉 =: 〈g8〉

Thus, g8 is not random → best possible way (any other
polynomial that eliminates x , y and w is a multiple of g8)

GB for lex order eliminates not only the first variable, but
also the first two variables, the first three variables, etc.
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Next extend partial solution to full solution

Definition 6 (Ideal variety)

Let I ⊆ k[x1, . . . , xn] be an ideal. We will denote by V (I ) the set

V (I ) = {(a1, . . . , an) ∈ kn|f (a1, . . . , an) = 0 for all f ∈ I}.

partial solution :⇔ (a`+1, . . . , an) ∈ V (I`)
Now, extend (a`+1, . . . , an) to a complete solution in V (I )

add one more coordinate to the solution, i.e. find a` s.t.
(a`, a`+1, . . . , an) ∈ V (I`−1)
suppose that I`−1 = 〈g1, . . . , gr 〉 in k[x`, x`+1, . . . , xn]. Want to
find solutions x` = a` of

g1(x`, a`+1, . . . , an) = · · · = gr (x`, a`+1, . . . , an) = 0.

polynomials of one variable x` =⇒ possible a`’s: roots of the
gcd of the above r polynomials
basic problem: above polynomials may not have a common
root (i.e. partial solution may not extend to complete solution)
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The following theorem tells us when this can be done:

Extension Theorem

Let I = 〈f1, . . . , fs〉 ⊆ C[x1, . . . , xn] and let I1 be the first
elimination ideal of I . For each 1 ≤ i ≤ s, write fi in the form

fi = ci (x2, . . . , xn)xNi
1 + terms in which x1 has degree < Ni ,

where Ni ≥ 0 and ci ∈ C[x2, . . . , xn] is nonzero. Suppose that we
have a partial solution (a2, . . . , an) ∈ V (I1). If
(a2, . . . , an) 6∈ V (c1, . . . , cs), then there exists a1 ∈ C s.t.
(a1, a2, . . . , an) ∈ V (I ).

Note: k = C (in fact, Extension Theorem is false over R), more
generally need an algebraically closed field k here.
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Some more examples (revealing caveats):

1 Consider I = 〈xy − 4, x3 − y2 − 1〉.
Compute GB G for lex order with x > y :

{16x − y4 − y2, y5 + y3 − 64}

Second polynomial, y5 + y3 − 64, has no rational roots.
No closed form expressions. E.g. using Mathematica’s
Solve[]:

{y → Root[-64+#1^3+#1^5&,1], . . .}

Can only find numerical approximations:

x = 1.80699, y = 2.21363;

x = −1.38823∓ 1.08623i , y = −1.78719± 1.3984i ;

x = 0.484732∓ 1.61705i , y = 0.680372± 2.26969i

Finite numerical precision can lead to subtle problems
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2 Twisted cubic again. GB for lex order with x > y > z

I = 〈x2 − y , xy − z , xz − y2, y3 − z2〉
Elimination ideals

I1 = I ∩ C[y , z ] = 〈y3 − z2〉 = 〈g4〉,
I2 = I ∩ C[z ] = 〈0〉.

So V (I2) = C (i.e. every a3 ∈ C is a partial solution).
Which partial solutions a3 ∈ C extend to (a1, a2, a3) ∈ V (I )?
Note: I2 is elimination ideal of I1
Coefficient of y3 in g4 is 1, so c1 = 1. Extension Thm says
that solution extends to (a2, a3) ∈ V (I1) if a3 6∈ V (1) = ∅. So,
it extends ∀a3 ∈ C
Leading x-coefficients in remaining polynomials g1, . . . , g3 are
1, y and z . Since 1 never vanishes, the Extension Thm
guarantees that a3 ∈ C always exists.
New: free parameter a3 ∈ C → Implicitization Problem
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Points in twisted cubic variety V (y − x2, z − x3) can be
parameterized by setting x = t in y − x2 = z − x3 = 0:

(x , y , z) = (t, t2, t3)

This is used e.g. in plotting the graph of the twisted cubic:
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Inverse direction known as Implicitization Problem:

Given a set of parametric equations (here: polynomials),

x1 = f1(t1, . . . , tm),

...

xn = fn(t1, . . . , tm),

defining a subset of an algebraic variety V in kn.

How can we find polynomial equations in the xi that define V ?
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Basic idea: eliminate the variables t1, . . . , tm using GB

We will take the lex order in k[t1, . . . , tm, x1, . . . , xn] defined
by the variable ordering

t1 > · · · > tm > x1 > · · · > xn.

Now suppose we have a GB of the ideal

Ĩ = 〈x1 − f1, . . . , xn − fn〉.

Since we are using lex order, we expect the GB to have
polynomials that eliminate variables, and t1, . . . , tm should be
eliminated first since they are biggest in our monomial order.

Thus, the GB for Ĩ should contain polynomials that only
involve x1, . . . , xn → candidates for the equations of V .
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Example: Parameterized twisted cubic curve V :
(x , y , z) = (t, t2, t3) Compute GB of Ĩ = 〈t − x , t2 − y , t3 − z〉 for
lex order in C[t, x , y , z ]:

{y3 − z2,−y2 + xz , xy − z , x2 − y , t − x}

From Elimination Thm:

Ĩ1 = Ĩ ∩ C[x , y , z ] = 〈y3 − z2,−y2 + xz , xy − z , x2 − y〉

Thus V ⊆ V (y3 − z2,−y2 + xz , xy − z , x2 − y).
However, difficult and more work required to decide whether

V = V (y3 − z2,−y2 + xz , xy − z , x2 − y)

→ Geometry of Elimination (not considered here)
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Even with best currently known versions of the algorithm:

Many examples of ideals for which the computation of a GB
takes a tremendously long time and/or consumes a huge
amount of storage space

Several reasons

total degrees of intermediate polynomials can be quite large
Coefficients in GB can be quite complicated rational
numbers, even when the coefficients of the original ideal
generators were small integers

→ search for upper bounds on complixity of computation

measure to what extent GB techniques will continue to be
tractable as larger and larger problems are attacked



How can it be useful?

Solving Polynomial Equations
Elimination Theory
Implicitization Problem
Complexity Issues

Bounds on degrees of generators in a GB are quite large

E.g. Mayr and Meyer (1982): ideal generated by polynomials
of degree less than or equal to some d can involve
polynomials of degree proportional to 22

d

22
d

grows very rapidly as d →∞!

E.g. GB of I = 〈xn+1 − yzn−1w , xyn−1 − zn, xnz − ynw〉 for
grevlex order with x > y > z > w (Mora (1983)):
reduced GB contains the polynomial zn

2+1 − yn
2
w .

However, experience shows that “on average” computations
often much more manageable than in worst cases

Experimentation with changes of variables and varying the
ordering of the variables often can reduce the difficulty of
the computation drastically

in most cases, grevlex order produces GB with polynomials of
the smallest total degree (Bayer and Stillmann (1987a))
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Take home message (regarding Complexity Issues)

Lex ordering very useful for solving system of polynomials

But: lex ordering can be very computationally intensive!

Hence, always choose the monomial ordering wisely

It should be adapted to the problem at hand (lex ordering not
always needed)

E.g. for implicitization problem it’s overkill (elimination order
suffices)

Also not needed for deciding whether V (I ) ⊆ kn is a finite set

(Lex ordering s.t. x1 > · · · > xn is an elimination ordering for
every partition {x1, . . . , xk}, {xk+1, . . . , xn}. Thus a GB for
this ordering carries much more information than usually
necessary. This may explain why GB for lex ordering are
usually the most difficult to compute.)
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What to do if lex ordering is still needed (e.g. for solving
polynomial equations)?

1 Clever trick: compute GB for another monomial ordering
(grevlex often fastest) and then do a “basis conversion”
(→ FGLM basis conversion algorithm, Gröbner Walk)

2 Instead of Buchberger’s algorithm, use a more advanced
algorithm to compute GB
(→ Faugère F4, F5)

Most modern computer algebra systems (e.g. Maple,
Magma, Singula, Sage, Macaulay2) feature implementations
of various versions and combinations of 1) and 2)



Thank you for your attention.
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Example (1): GB for grlex order (running time 0.002 s)

x2 + y2 + z2 − 1,

wz − xy + z ,

wy − xz ,

2wx + 3y2 − 2yz + 3z2 − 3,

− xy + 17xz + 17yz2 − 13z3 + 13z ,

− 6xy + 17y2z + 7z3 − 7z ,

− 7xy − 17xz + 17y3 − 17y + 11z3 − 11z ,

12w2 + 10w + 24xz2 − 15x + 27y2 + 9yz + 25z2 − 27,

12w2 + 2w + 24xyz − 3x + 27y2 − 3yz + 17z2 − 27,

12w2 + 10w + 24xy2 − 15x + 27y2 − 15yz + 25z2 − 27,

12w3 − 23w − 6x − 6yz − 11z2,

1164w2 + 466w − 699x + 2619y2 − 699yz + 1152z4 + 769z2 − 2619.

(Note: 12 instead of 8 polynomials; all mixed)



Example (1): GB for grevlex order (running time 0.002 s)

− wz + xy − z ,

wy − xz ,

x2 + y2 + z2 − 1,

2wx + 3y2 − 2yz + 3z2 − 3,

− wz + 17xz + 17yz2 − 13z3 + 12z ,

12w2 + 10w + 24xz2 − 15x + 27y2 + 9yz + 25z2 − 27,

12w2 + 24wz2 + 2w − 3x + 27y2 − 3yz + 41z2 − 27,

− 6wz + 17y2z + 7z3 − 13z ,

17w2z + 23wz + 10z3 − 4z ,

− 7wz − 17xz + 17y3 − 17y + 11z3 − 18z ,

12w3 − 23w − 6x − 6yz − 11z2,

1164w2 + 466w − 699x + 2619y2 − 699yz + 1152z4 + 769z2 − 2619.

(Note: 12 instead of 8 polynomials; all mixed)
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