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Motivation

CY 4-folds are important objects in string theory. E.g.

to build N = 1, d = 4 string vacua based on F-theory
dualities (M ⇐⇒ F, het. ST ⇐⇒ F)
mirror symmetry

Our goal: systematically explore & map out F-CY4

“landscape” (as opposed to “geometric engineering”)

Start: find description of all CY 4-folds which are complete
intersections in products of projective spaces (CICYs)

Arguably “simplest” explicit CY constructions =⇒
many properties relatively straightforward to compute
Analog of very useful list of 7890 CICY 3-folds [Hübsch (1987);

Green et. al. (1987); Candelas et. al. (1988)]

Generating equivalent 4-fold list requires qualitative and
quantitative modifications ...
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Example

An example of a CICY 4-fold configuration matrix (id 244)



1 1 1
2 1 2
3 0 4




Represents a family of CY 4-folds defined by the solutions to
the polynomials

p1 =
∑

i,a

ciax
iy a , p2 =

∑

i,...,δ

diabαβγδx
iy aybzαzβzγzδ

in the ambient space P1 × P2 × P3

Simplest case: “sextic” [5|6]
(4d analog of famous “quintic”)
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Generalities

(Family of) CICYs described by configuration matrix:

[n|q] ≡




n1 q1
1 . . . q1

K
...

...
. . .

...
nm qm1 . . . qmK




Ambient space: Pn1 × · · · × Pnm

CICY: common zero locus of homogeneous polynomials
{pα}α=1...K

Many properties of manifold encoded just in [n|q], e.g.

Dimension of the complete intersection:
∑

r nr − K
!

= 4

Configuration is Calabi-Yau (c1 = 0) if:
∑K
α=1 q

r
α = nr + 1
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Results

Complete classification (∼ 1 yr. on large computer cluster)

Result: list of 921,497 configuration matrices
Same code correctly reproduces old CICY 3-fold list
Counting of product manifolds (T 2 × CY3, T 4 × K3, T 8,
K3× K3) comes out correctly

Some redundancies are still present

distinguish via topological invariants
=⇒ at least 36,779 different topologies
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arXiv:1303.1832 or at
http://cicy4folds.haupt1.de
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Elliptic Fibrations

F-theory usually defined on elliptically fibered CY 4-fold

No known general (& for our purpose practical) criterion for
when 4-fold is elliptically fibered, but ...

for CICYs, ∃ “obvious elliptic
fibration” (=OEF) struct.:

More generally:

Scan of all CICY 4-folds: 99.95% are OEF
(∼ 1/2 yr. on computer cluster)


2 0 3
4 2 3

�
T 2

base [4|2]

Ellip/c,Fibra/ons,
•  Consider,configura/on,matrices,which,can,be,put,in,
the,form:,

•  This,is,an,ellip/cally,fibred,fourUfold,
•  In,our,list,of,921,497,matrices,,921,020,have,such,a,
fibra/on,structure.,


A1 0 F
A2 B T

�

⇥
A1 F

⇤
= T 2

⇥
A2 B

⇤
Base:,
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Elliptic Fibrations — continued

In total: ∼ 5× 107 fibrations

All manifolds with h1,1 > 12 have at least one such fibration
(cf. similar observation for ell. fib. CY 3-folds [Taylor

(1205.0952); Johnson, Taylor (1406.0514)])

Can test some necc. conditions for section to exist (existence
as a generic element of “favourable” divisor i.e. descending
from hyperplanes in the ambient space)
Computer scan: ∼ 2.6× 107 (∼ 52%) pass test
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N = 1
2 domain wall solutions

of heterotic supergravity
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Motivation

One classic route to N = 1, d = 4 physics from string theory
is M10 = R1,3 × CY3, but difficult to stabilize all moduli

Better: CY3 → more general SU(3) structure mfld (+ flux)

But then: in general, no perturbative N = 1 Minkowski vacua
exist (except “Strominger system”)

Phenomenologically: want vacuum (close to) Minkowski after
taking into account perturbative and non-perturbative effects

Non-perturbative corrections to superpotential required in
many moduli stabilization scenarios → too restrictive to
demand existence of Minkowski vacuum in their absence

E.g.�� ��Pert. N = 1/2 DW +
�� ��non-pert. effects →

�� ��N = 1 Mink.
such as gaugino condensation, (or close to)

membrane instantons

Balancing – if possible – requires fine tuning similar to KKLT
(PE anomalously small) or LVS (NPE anomalously large)
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Heterotic supergravity

Ingredients on d = 10 manifold M:
Lorentzian metric ĝ
Neveu-Schwarz 3-form Ĥ ∈ Ω3(M)
dilaton φ̂ :M→ R
gauge connection A∇̂ with gauge group SO(32) or E8 × E8

Anomaly cancellation condition leads to Bianchi identity:

d̂Ĥ =
α′

4
Tr(F̂ ∧ F̂ − R̃ ∧ R̃)

at O(α′) (here: R̃ · ε = 0). At lowest order: d̂Ĥ = 0.

BPS equations (SUSY background):

gravitino: −∇̂ε = 0

dilatino1:
(

d̂φ̂− 1
2 Ĥ
)
· ε = 0

gaugino1: F̂ · ε = 0 =⇒ (later: YM instantons)

1 Defn: ω · ε = 1
p!
ωi1...ipγ

i1 · · · γ ip ε, where γ i are Clifford matrices ({γ i , γj} = 2g ij )

}
=⇒ G structure
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Ansatz

Let’s consider M = R1,2 × R× X6, with X6 compact

Metric
ĝ = e2A(xm)

(
ηαβdxαdxβ + e2∆(xu)dx3dx3 + guv (xm)dxudxv

)

d = 1 + 2 domain wall. WV: {xα}, trans.: {xm} = {x3, xu}
Killing spinor: ε(xα, xm) = ρ(xα)⊗ η(xm)⊗ θ
ρ has two real components =⇒ our background preserves
two real supercharges (N = 1

2 SUSY in d = 4 terminology)

Lorentz invariance on d = 1 + 2 domain wall world-volume
=⇒ ∂αφ̂ = 0, Ĥαmn = 0, Ĥαβn = 0

Simplification in this talk: A = 0, ∆ = 0, Ĥαβγ = 0

[Lukas, Matti (1005.5302); Gray, Larfors, Lüst (1205.6208);

AH, Lechtenfeld, Musaev (1409.0548)]
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G2 structure on X7 = R× X6

Consider d = 7 part of previous ansatz:
X7 = R× X6, g7 = dx3dx3 + guv (xm)dxudxv

On X7 we can construct a globally well-defined 3-form
ϕ ∈ Ω3(X7) and its d = 7 Hodge dual Φ := ∗7ϕ ∈ Ω4(X7)

ϕmnp = −iη†Γmnpη , Φmnpq = η†Γmnpqη .

with {Γm, Γn} = 2(g7)mn and Γm1...mp := Γ[m1
· · · Γmp ].

First two BPS equations then imply

d7ϕ = 2d7φ̂ ∧ ϕ− ∗7Ĥ , ∗7d7φ̂ = −1
2 Ĥ ∧ ϕ ,

d7Φ = 2d7φ̂ ∧ Φ , 0 = Ĥ ∧ Φ .

First two BPS equations =⇒ G2 structure on X7
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SU(3) structure on X6

Decompose η into two d = 6 spinors of definite chirality:

η = 1√
2

(η+ + η−)

They still depend on non-compact transverse direction y := x3

For every fixed value of y , have globally well-defined real
2-form J and complex 3-form Ω = Ω+ + iΩ−

Ωuvw = η†+γuvwη− , Juv = ∓η†±γuvη± .

Specifies a static SU(3) structure on X6

G2 structure on X7 ↔ SU(3) structure on X6

ϕ = dy ∧ J + Ω− , Φ = dy ∧ Ω+ + 1
2J ∧ J .
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Zeroth order nearly Kähler solutions

BI @ O((α′)0) is simply d̂Ĥ = 0

Gauge sector trivial (only condition F̂ · ε = 0, solved by F̂ = 0)

Restrict SU(3) structure to nearly Kähler (torsion class W1)

dJ = −3
2W

−
1 Ω+ + 3

2W
+
1 Ω− , dΩ = W1J ∧ J .

BPS + BI =⇒ Ĥ = −1
2φ
′Ω+ + 3

2W
−
1 Ω−− 2W−

1 J ∧ dy and

0 = φ′W+
1 − 3(W−

1 )2 ,

0 = φ′′ + 3
2 (φ′)2 + 13

2 φ
′W+

1 ,

0 = φ′α− 3(W−
1 )′ − 21

2 W+
1 W−

1 − 9
2φ
′W−

1 .

2 special solutions: [Lukas et.al. (1005.5302); Lüst et.al. (1205.6208)]

NK with φ = const., Ĥ = 0 (W+
1 = any, W−1 = 0, α = any)

CY with flux (φ = 2
3 log (ay + b), W1 = 0, α = 0)



Lift to O(α′) and appearance
of higher-dim. YM instantons
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Appearance of higher-dim. YM instantons

Need to deal with non-trivial BI:

d̂Ĥ =
α′

4
Tr(F̂ ∧ F̂ − R̃ ∧ R̃)

in general
=⇒ F̂ 6= 0 and thus need to solve

F̂ · ε = 0

Solutions to F̂ · ε = 0 are called YM instantons

Originally YM instantons first appeared in a different
context ...
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Yang-Mills instantons in d = 4

Definition

A (classical) Yang-Mills instanton is a gauge connection on
Euclidean M4, whose curvature F is self-dual, i.e. ∗F = F .

Properties

Solutions of YM-eq. (0
BI
= DF = D ∗ F =⇒ D ∗ F = 0)

Absolute minima of YM-action SYM = 1
2e

∫
M4 Tr(F ∧ ∗F )

within their topological type

1st order eq. easier to solve than 2nd order YM-eq.

Localized in space & time (when Wick rotated
M4 →M1,3), hence called “instanton” or “pseudoparticle”

[Belavin, Polyakov, Schwarz, Tyupkin (1975); Atiyah, Hitchin, Singer (1977); Atiyah,

Drinfeld, Hitchin, Manin (1977), . . .]
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Applications & Example

Maths: classification of 4-manifolds (e.g. Donaldson
invariants [Donaldson (1983)])
Physics: [’t Hooft (1976); Jackiw, Rebbi (1976); Callan et.al. (1978), . . .]

Instantons are critical points of YM-action
Appear in PI as leading quantum corrections to class. behavior
=⇒ learn about structure of YM-vacuum

1st example: BPST inst. [Belavin, Polyakov, Schwarz, Tyupkin (1975)]

M4 = R4, G = SU(2), xµ = ({x i}i=1,2,3, x
4)

Aµ =
r2

r2 + λ2
g−1(x)∂µg(x) ,

with r2 :=
∑

µ(xµ)2, g(x) =
x4+i

∑
i x

iσi

r , σi = Pauli matrices.

Note: SYM = 8π2

e2 . PI e−SYM = e−(8π2)/e2

(no pert. exp. in e =⇒ non-pert.)



Calabi-Yau 4-folds
N = 1/2 DWs in het. SUGRA

Lift to O(α′) & YM instantons

Instantons in d = 4
Instantons in d > 4
New solutions @ O(α′)

Yang-Mills instantons in d > 4

Definition

In higher dimensions, the instanton equation is generalized to

∗F = −(∗Q) ∧ F ,

with some globally well-defined 4-form Q.

[Corrigan, Devchand, Fairlie, Nuyts (1983)]

Properties

Need additional structure on M to have Q ↔ G structure

Instanton eq. =⇒ YM with torsion D ∗ F + F ∧ ∗H = 0.
Torsion 3-form ∗H := d ∗ Q (ordinary YM if Q co-closed).

Action for YM with torsion is finite for instantons
SYM + SCS =

∫
M Tr

{
F ∧ ∗F + (−1)d−3F ∧ F ∧ ∗Q

}
<∞

Torsion appears naturally in string theory (H ↔ NS flux)
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Yang-Mills instantons in d > 4 — continued

Alternative definitions

F · ε = 0 (the defn I gave earlier!)

F ∈ g (often in math. lit., g = Lie alg. of structure group G )

In general: F · ε = 0 =⇒ F ∈ g =⇒ ∗F = −(∗Q) ∧ F

Which manifolds admit a globally well-defined 4-form Q?
→ G structure manifolds (i.e. manifolds with weak special
holonomy), e.g. [Berger (1955); Bär (1993)]

SU(3) structure in d = 6
G2 structure in d = 7
Spin(7) structure in d = 8
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Example

Instanton solution on (cylinder over) compact nearly Kähler X6

SU(3) structure on X6 characterized by globally well-defined
real 2-form J and complex 3-form Ω = Ω+ + iΩ−

dJ = −3
2 Im(W1Ω̄) + W4 ∧ J + W3 ,

dΩ = W1J ∧ J + W2 ∧ J + W̄5 ∧ Ω .

5 intrinsic torsion classes, e.g.
W1 = . . . = W5 = 0 ⇔ CY3 (dJ = 0 & dΩ = 0)
W2 = . . . = W5 = 0 ⇔ nearly Kähler

Now, specialize to NK X6 with W+
1 = 2, W−

1 = 0, i.e.

dJ = 3Ω− , dΩ+ = 2J ∧ J .

Examples: 4 homogeneous spaces [Butruille (math/0612655)]

S6 = G2/SU(3), F3 = SU(3)/U(1)2,
CP3 = Sp(2)/Sp(1)× U(1), S3 × S3 = SU(2)3/SU(2)diag
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Example — continued

On X6 always 2 real Killing spinors η± of opposite chirality

LC∇uη± = ∓ i
2γuη± .

Important observation: Puvwγ
vwη± = 4iγuη±

(with P := Ω+)

Definition

Connection can∇ on G structure manifold is canonical if it has
holonomy G and torsion totally anti-symmetric w.r.t. some
G -compatible metric.

Here: canΓw
uv = LCΓw

uv + 1
2Puvw (can∇uv

v = ∂uv
v + canΓv

uwv
w ){

can∇η± = 0 (Hol(can∇) = SU(3); note: LC∇η± 6= 0)

T u = 1
2P

u
vwe

v ∧ ew
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Example — continued

Back to instanton equation:

What is Q? → Q = ∗J = 1
2J ∧ J

∗F = −J ∧F ⇔ (F ∈ Ω1,1 and JyF = 0) (DUY; herm. YM)

Important: can∇ is an instanton on X6 [Harland, Nölle (1109.3552)]

Consider cylinder over NK coset, Z (K/H) = R× (K/H),
with metric g7 = dτ ⊗ dτ + g6

SU(3) structure on K/H lifts to G2 structure on Z (K/H)

ϕ = dτ ∧ J + Ω− , Φ := ∗7ϕ = dτ ∧ Ω+ + 1
2J ∧ J .

In general, G2 structure equations:

d7ϕ = τ0Φ + 3τ1 ∧ ϕ+ ∗7τ3 ,

d7Φ = 4τ1 ∧ Φ + τ2 ∧ ϕ .

Here: (loc.) conformally parallel G2 structure (τ1 = −dτ)
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Example — continued

[Harland, Nölle (1109.3552); AH, Lechtenfeld, Musaev (1409.0548)]

Recall: coset X6 = K/H

Lie algebra decomposes: k = h⊕m

Lie algebra generators of k split: {IA} = {Ii} ∪ {Iu}
Ansatz for instanton connection on Z (K/H)

A∇ = can∇+ ψ(τ)euIu ,

parametrized by one function ψ(τ).

Instanton equation =⇒ ψ̇ = 2ψ(ψ − 1)

Solutions:
ψ = 0 [A∇ = can∇]
ψ = 1 [A∇ = LC-conn. of cone]
Tanh-kink: ψ(τ) = 1

2 (1− tanh[τ − τ0])
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-4 -2  0  2  4  6  8

ψ

τ

0.5*(1-tanh(x-2))
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NK DW solutions @ O(α′)
[Harland, Nölle (1109.3552); Lukas et.al. (1210.5933); AH et.al. (1202.5046, 1409.0548)]

Ansatz: M = R1,2 × R× X6

ĝ = ηαβdxαdxβ + e2f (τ)
(
dτ2 + guv (xw )dxudxv

)
,

−∇̂ = can∇+ ψ1(τ)euIu ,
A∇̂ = can∇+ ψ2(τ)euIu .

Solution:

Ĥ = −α′

4

(
ψ2

1(2ψ1 − 3)

− ψ2
2(2ψ2 − 3)

)
Ω+ ,

φ = φ0 + 2(f − τ) ,

e2f = e2(τ−τ0) + α′

4

(
ψ2

1 − ψ2
2

)
with ψ1,2 ∈ {0, 1, tanh-kink}.

8 distinct cases, e.g. ψ1 = 1, ψ2 = tanh-kink
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Conclusions

Summary�� ��Pert. N = 1/2 DW +
�� ��non-pert. effects →

�� ��N = 1 Mink.

First two BPS eqs. =⇒ SU(3) str. on X6, G2 str. on R×X6

@ O((α′)0): F̂ = 0 and e.g. (NK with φ = const., Ĥ = 0) or
(CY w/ flux)

@ O(α′): F̂ · ε = 0 =⇒ higher-dim. YM instantons

Find explicit instantons on R×NK which have tanh-kink
shape and are useful for constructing full O(α′) heterotic
domain wall solutions

Outlook

Recently obtained new instantons (and non-instanton YM
configs) on R× X7, where X7 has G2 str. or even SU(3) str.
(to appear soon)

Qu.: embed into het. SUGRA as new (non-)SUSY solns.?



Thank you for your attention.
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Dynamic SU(3) structure on X6

From first two BPS eqs. (restore y -dependence of J, Ω):

dJ = Ω′− − 2φ′Ω− − ∗H , 0 = ∗φ′ + 1
2H ∧ Ω− ,

J ∧ dJ = 0 , 0 = 1
2Hy ∧ Ω− − 1

2H ∧ J ,

dΩ+ = J ∧ J ′ − φ′J ∧ J , 0 = Ω+ ∧ H + 1
2Hy ∧ J ∧ J ,

dΩ− = − ∗ Hy ,

with d7ω = dω + dy ∧ ω′, φ̂ = φ(y) and Ĥ = H + dy ∧ Hy .

Generalization of Hitchin flow equations for dynamic
SU(3) structure — common in d = 4 BPS DW solutions of
d = 10 SUGRA theories [Mayer, Mohaupt (hep-th/0407198); Louis,

Vaulà (hep-th/0605063); Smyth, Vaulà (0905.1334)]

For Ĥ = 0 and φ = 0, restore original Hitchin flow equations:

J ∧ dJ = 0 , dJ = Ω′− ,

dΩ− = 0 , dΩ+ = J ∧ J ′ .
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