

Particles, Strings, and the Early Universe Collaborative Research Center SFB 676

$\mathcal{N} = \frac{1}{2}$ domain walls & Yang-Mills instantons in heterotic supergravity

Alexander Haupt

18 June 2015

CY 4-folds: arXiv:1303.1832, arXiv:1405.2073 with James Gray and Andre Lukas Main part: arXiv:1202.5046, arXiv:1409.0548 with Karl-Philip Gemmer, Olaf Lechtenfeld, Edvard Musaev, Christoph Nölle, Alexander D. Popov

Plan

- Brief advert for recent classification result for certain family of Calabi-Yau 4-folds
- Ø Main part
 - $\mathcal{N}=\frac{1}{2}$ domain wall solutions of heterotic supergravity
 - Lift to $\mathcal{O}(\alpha')$ and appearance of higher-dim. YM instantons

Onclusions

Calabi-Yau 4-folds

Motivation Example & Generalities Results

Motivation

- CY 4-folds are important objects in string theory. E.g.
 - to build $\mathcal{N}=1,~d=4$ string vacua based on **F-theory**
 - dualities (M \iff F, het. ST \iff F)
 - mirror symmetry
- Our goal: systematically explore & map out F-CY₄
 "landscape" (as opposed to "geometric engineering")
- Start: find description of all CY 4-folds which are complete intersections in products of projective spaces (CICYs)
 - \bullet Arguably "simplest" explicit CY constructions \Longrightarrow many properties relatively straightforward to compute
 - Analog of very useful list of 7890 CICY 3-folds [Hübsch (1987); Green et. al. (1987); Candelas et. al. (1988)]
 - Generating equivalent 4-fold list requires qualitative and quantitative modifications ...

Motivation Example & Generalities Results

Example

• An example of a CICY 4-fold configuration matrix (id 244)

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 3 & 0 & 4 \end{bmatrix}$$

• Represents a family of CY 4-folds defined by the solutions to the polynomials

$$p_{1} = \sum_{i,a} c_{ia} x^{i} y^{a} , \qquad p_{2} = \sum_{i,...,\delta} d_{iab\alpha\beta\gamma\delta} x^{i} y^{a} y^{b} z^{\alpha} z^{\beta} z^{\gamma} z^{\delta}$$

- in the ambient space $\mathbb{P}^1\times\mathbb{P}^2\times\mathbb{P}^3$

• Simplest case: **"sextic"** [5|6] (4d analog of famous "quintic")

Generalities

• (Family of) CICYs described by configuration matrix:

$$[\mathbf{n}|\mathbf{q}] \equiv \begin{bmatrix} n_1 & q_1^1 & \dots & q_K^1 \\ \vdots & \vdots & \ddots & \vdots \\ n_m & q_1^m & \dots & q_K^m \end{bmatrix}$$

Example & Generalities

Results

- Ambient space: $\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$
- CICY: common zero locus of homogeneous polynomials $\{p_{\alpha}\}_{\alpha=1...K}$
- Many **properties** of manifold **encoded** just in **[n|q]**, e.g.
 - Dimension of the complete intersection: $\sum_{r} n_r K \stackrel{!}{=} 4$
 - Configuration is Calabi-Yau $(c_1 = 0)$ if: $\sum_{\alpha=1}^{K} q_{\alpha}^r = n_r + 1$

Motivation Example & Generalities Results

Results

105

100

500

1000

wumber of matrices

- Complete classification (~ 1 yr. on large computer cluster)
 - Result: list of 921,497 configuration matrices
 - Same code correctly reproduces old CICY 3-fold list

2000

2500

- Counting of product manifolds ($T^2 \times CY_3$, $T^4 \times K3$, T^8 , K3 × K3) comes out correctly
- Some redundancies are still present
 - distinguish via topological invariants

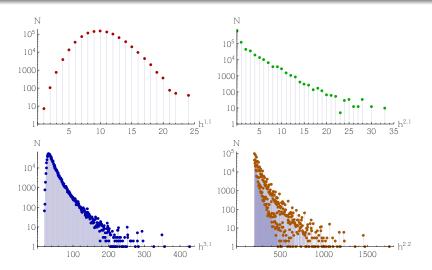
1500

 \implies at least 36,779 different topologies

Data and code in arXiv:1303.1832 or at http://cicy4folds.haupt1.de

Motivation Example & Generalities Results

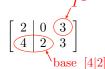
Hodge data



Motivation Example & Generalities Results

Elliptic Fibrations

- F-theory usually defined on elliptically fibered CY 4-fold
- No known general (& for our purpose practical) criterion for when 4-fold is elliptically fibered, but ...
- for CICYs, ∃ "obvious elliptic fibration" (=OEF) struct.:



 $|\mathcal{A}_1|\mathcal{F}| = T^2$

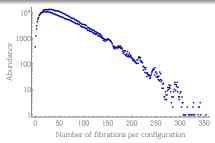
• More generally:

Base:
$$\begin{bmatrix} A_2 & B \end{bmatrix} = \begin{bmatrix} A_1 & 0 & F \\ A_2 & B & T \end{bmatrix}$$

• Scan of all CICY 4-folds: 99.95% are OEF ($\sim 1/2$ yr. on computer cluster)

Motivation Example & Generalities Results

Elliptic Fibrations — continued



- $\bullet\,$ In total: $\sim 5\times 10^7$ fibrations
- All manifolds with $h^{1,1} > 12$ have at least one such fibration (cf. similar observation for ell. fib. CY 3-folds [Taylor (1205.0952); Johnson, Taylor (1406.0514)])
- Can test some necc. conditions for **section** to exist (existence as a generic element of "favourable" divisor i.e. descending from hyperplanes in the ambient space) Computer scan: $\sim 2.6 \times 10^7$ ($\sim 52\%$) pass test

 $\mathcal{N} = \frac{1}{2}$ domain wall solutions of heterotic supergravity

Calabi-Yau 4-folds Motivation $\mathcal{N} = 1/2$ DWs in het. SUGRA Lift to $\mathcal{O}(\alpha')$ & YM instantons

Motivation

- One classic route to $\mathcal{N} = 1$, d = 4 physics from string theory is $\mathcal{M}^{10} = \mathbb{R}^{1,3} \times CY_3$, but difficult to stabilize all moduli
- Better: $CY_3 \rightarrow more general SU(3)$ structure mfld (+ flux)
- But then: in general, no perturbative $\mathcal{N} = 1$ Minkowski vacua exist (except "Strominger system")
- Phenomenologically: want vacuum (close to) Minkowski after taking into account perturbative and non-perturbative effects
- Non-perturbative corrections to superpotential required in many moduli stabilization scenarios \rightarrow too restrictive to demand existence of Minkowski vacuum in their absence

• E.g.
Pert.
$$\mathcal{N} = 1/2 \text{ DW}$$
 + non-pert. effects $\rightarrow \mathcal{N} = 1 \text{ Mink.}$

such as gaugino condensation, membrane instantons

(or close to)

 Balancing – if possible – requires fine tuning similar to KKLT (PE anomalously small) or LVS (NPE anomalously large)

Motivation Heterotic supergravity set-up Zeroth order nearly Kähler domain wall solutions

Heterotic supergravity

- Ingredients on d = 10 manifold \mathcal{M} :
 - Lorentzian metric ĝ
 - Neveu-Schwarz 3-form $\hat{H} \in \Omega^3(\mathcal{M})$
 - dilaton $\hat{\phi} : \mathcal{M} \to \mathbb{R}$
 - gauge connection ${}^A\hat{
 abla}$ with gauge group SO(32) or $E_8 imes E_8$
- Anomaly cancellation condition leads to **Bianchi identity**:

$$\hat{\mathsf{d}}\hat{H}=rac{lpha'}{4}\operatorname{\mathsf{Tr}}(\hat{F}\wedge\hat{F}- ilde{R}\wedge ilde{R})$$

at $\mathcal{O}(\alpha')$ (here: $\tilde{R} \cdot \epsilon = 0$). At lowest order: $\hat{d}\hat{H} = 0$.

- BPS equations (SUSY background):
 - gravitino: $-\hat{\nabla}\epsilon = 0$ • dilatino¹: $(\hat{d}\hat{\phi} - \frac{1}{2}\hat{H}) \cdot \epsilon = 0$ $\} \implies G$ structure
 - gaugino¹: $\hat{F} \cdot \epsilon = 0$ \implies (later: YM instantons)

¹ Defⁿ: $\omega \cdot \epsilon = \frac{1}{\rho!} \omega_{i_1 \dots i_p} \gamma^{i_1} \cdots \gamma^{i_p} \epsilon$, where γ^i are Clifford matrices $(\{\gamma^i, \gamma^j\} = 2g^{ij})$

Ansatz

- Let's consider $\mathcal{M} = \mathbb{R}^{1,2} \times \mathbb{R} \times X_6$, with X_6 compact
- Metric $\hat{g} = e^{2A(x^m)} \left(\eta_{\alpha\beta} dx^{\alpha} dx^{\beta} + e^{2\Delta(x^u)} dx^3 dx^3 + g_{\mu\nu}(x^m) dx^u dx^\nu \right)$
- d = 1 + 2 domain wall. WV: $\{x^{\alpha}\}$, trans.: $\{x^{m}\} = \{x^{3}, x^{u}\}$
- Killing spinor: $\epsilon(x^{\alpha}, x^{m}) = \rho(x^{\alpha}) \otimes \eta(x^{m}) \otimes \theta$
- ρ has two real components \implies our background preserves two real supercharges ($\mathcal{N} = \frac{1}{2}$ SUSY in d = 4 terminology)
- Lorentz invariance on d = 1 + 2 domain wall world-volume $\implies \partial_{\alpha}\hat{\phi} = 0, \ \hat{H}_{\alpha m n} = 0, \ \hat{H}_{\alpha \beta n} = 0$

• Simplification in this talk: $A=0,\ \Delta=0,\ \hat{H}_{lphaeta\gamma}=0$

[Lukas, Matti (1005.5302); Gray, Larfors, Lüst (1205.6208);

AH, Lechtenfeld, Musaev (1409.0548)]

Motivation Heterotic supergravity set-up Zeroth order nearly Kähler domain wall solutions

G_2 structure on $X_7 = \mathbb{R} \times X_6$

- Consider d = 7 part of previous ansatz:
 - $X_7 = \mathbb{R} \times X_6$, $g_7 = dx^3 dx^3 + g_{uv}(x^m) dx^u dx^v$
- On X_7 we can construct a **globally well-defined 3-form** $\varphi \in \Omega^3(X_7)$ and its d = 7 Hodge dual $\Phi := *_7\varphi \in \Omega^4(X_7)$

$$\varphi_{mnp} = -i\eta^{\dagger}\Gamma_{mnp}\eta , \qquad \Phi_{mnpq} = \eta^{\dagger}\Gamma_{mnpq}\eta .$$

with $\{\Gamma_m, \Gamma_n\} = 2(g_7)_{mn}$ and $\Gamma_{m_1...m_p} := \Gamma_{[m_1} \cdots \Gamma_{m_p]}$. • First two BPS equations then imply

$$\begin{split} \mathsf{d}_7 \varphi &= 2\mathsf{d}_7 \hat{\phi} \wedge \varphi - *_7 \hat{H} \;, & *_7 \mathsf{d}_7 \hat{\phi} &= -\frac{1}{2} \hat{H} \wedge \varphi \;, \\ \mathsf{d}_7 \Phi &= 2\mathsf{d}_7 \hat{\phi} \wedge \Phi \;, & 0 &= \hat{H} \wedge \Phi \;. \end{split}$$

• First two BPS equations \implies G_2 structure on X_7

Motivation Heterotic supergravity set-up Zeroth order nearly Kähler domain wall solutions

SU(3) structure on X_6

• **Decompose** η into two d = 6 spinors of definite chirality:

$$\eta = \frac{1}{\sqrt{2}}(\eta_+ + \eta_-)$$

- They still depend on non-compact transverse direction $y := x^3$
- For every fixed value of *y*, have globally well-defined real 2-form *J* and complex 3-form $\Omega = \Omega_+ + i\Omega_-$

$$\Omega_{\rm uvw} = \eta^\dagger_+ \gamma_{\rm uvw} \eta_- \;, \qquad J_{\rm uv} = \mp \eta^\dagger_\pm \gamma_{\rm uv} \eta_\pm \;.$$

- Specifies a static SU(3) structure on X₆
- G_2 structure on $X_7 \leftrightarrow SU(3)$ structure on X_6

$$\varphi = dy \wedge J + \Omega_{-} , \qquad \Phi = dy \wedge \Omega_{+} + \frac{1}{2}J \wedge J .$$

Motivation Heterotic supergravity set-up Zeroth order nearly Kähler domain wall solutions

Zeroth order nearly Kähler solutions

- BI @ $\mathcal{O}((\alpha')^0)$ is simply $\hat{d}\hat{H} = 0$
- Gauge sector trivial (only condition $\hat{F} \cdot \epsilon = 0$, solved by $\hat{F} = 0$)
- Restrict SU(3) structure to **nearly Kähler** (torsion class W_1)

$$dJ = -\frac{3}{2}W_1^-\Omega_+ + \frac{3}{2}W_1^+\Omega_- , \quad d\Omega = W_1J \wedge J .$$

• BPS + BI $\implies \hat{H} = -\frac{1}{2}\phi'\Omega_+ + \frac{3}{2}W_1^-\Omega_- - 2W_1^-J \wedge dy$ and

$$0 = \phi' W_1^+ - 3(W_1^-)^2 ,$$

$$0 = \phi'' + \frac{3}{2}(\phi')^2 + \frac{13}{2}\phi' W_1^+ ,$$

$$0 = \phi' \alpha - 3(W_1^-)' - \frac{21}{2}W_1^+ W_1^- - \frac{9}{2}\phi' W_1^- .$$

• 2 special solutions: [Lukas et.al. (1005.5302); Lüst et.al. (1205.6208)]

- NK with $\phi = \text{const.}$, $\hat{H} = 0$ ($W_1^+ = \text{any}$, $W_1^- = 0$, $\alpha = \text{any}$)
- CY with flux $(\phi = \frac{2}{3} \log (ay + b), W_1 = 0, \alpha = 0)$

Lift to $\mathcal{O}(\alpha')$ and appearance of higher-dim. YM instantons

nstantons in d = 4nstantons in d > 4lew solutions @ $\mathcal{O}(\alpha')$

Appearance of higher-dim. YM instantons

• Need to deal with non-trivial BI:

$$\hat{\mathsf{d}}\hat{H}=rac{lpha'}{4}\operatorname{\mathsf{Tr}}(\hat{F}\wedge\hat{F}- ilde{R}\wedge ilde{R})$$

•
$$\stackrel{\text{in general}}{\Longrightarrow} \hat{F} \neq 0$$
 and thus need to solve

 $\hat{F} \cdot \epsilon = 0$

- Solutions to $\hat{F} \cdot \epsilon = 0$ are called **YM instantons**
- Originally YM instantons first appeared in a different context ...

Instantons in d = 4Instantons in d > 4New solutions @ $\mathcal{O}(\alpha')$

Yang-Mills instantons in d = 4

Definition

A (classical) Yang-Mills instanton is a gauge connection on Euclidean \mathcal{M}^4 , whose curvature F is **self-dual**, i.e. *F = F.

Properties

- Solutions of YM-eq. $(0 \stackrel{BI}{=} DF = D * F \implies D * F = 0)$
- Absolute minima of YM-action $S_{YM} = \frac{1}{2e} \int_{\mathcal{M}^4} \text{Tr}(F \wedge *F)$ within their topological type
- 1st order eq. easier to solve than 2nd order YM-eq.
- Localized in space & time (when Wick rotated $\mathcal{M}^4 \to \mathcal{M}^{1,3}$), hence called "instanton" or "pseudoparticle"

[Belavin, Polyakov, Schwarz, Tyupkin (1975); Atiyah, Hitchin, Singer (1977); Atiyah, Drinfeld, Hitchin, Manin (1977), ...]

Instantons in d = 4Instantons in d > 4New solutions @ $\mathcal{O}(\alpha')$

Applications & Example

- Maths: classification of 4-manifolds (e.g. Donaldson invariants [Donaldson (1983)])
- Physics: ['t Hooft (1976); Jackiw, Rebbi (1976); Callan et.al. (1978), ...]
 - Instantons are critical points of YM-action
 - Appear in PI as leading quantum corrections to class. behavior
 - \implies learn about structure of YM-vacuum

• 1st example: BPST inst. [Belavin, Polyakov, Schwarz, Tyupkin (1975)]

$$\mathcal{M}^4 = \mathbb{R}^4$$
, $G = SU(2)$, $x^{\mu} = (\{x^i\}_{i=1,2,3}, x^4)$

$$A_{\mu}=\frac{r^2}{r^2+\lambda^2}g^{-1}(x)\partial_{\mu}g(x) ,$$

with $r^2 := \sum_{\mu} (x^{\mu})^2$, $g(x) = \frac{x^4 + i \sum_i x^i \sigma^i}{r}$, σ^i = Pauli matrices. Note: $S_{\text{YM}} = \frac{8\pi^2}{e^2}$. PI $e^{-S_{\text{YM}}} = e^{-(8\pi^2)/e^2}$ (no pert. exp. in $e \implies$ non-pert.)

Instantons in d = 4Instantons in d > 4New solutions @ $\mathcal{O}(\alpha')$

Yang-Mills instantons in d > 4

Definition

In higher dimensions, the instanton equation is generalized to

$$*F = -(*Q) \wedge F ,$$

with some globally well-defined 4-form Q.

[Corrigan, Devchand, Fairlie, Nuyts (1983)]

Properties

- Need additional structure on \mathcal{M} to have $Q \leftrightarrow G$ structure
- Instanton eq. \implies **YM** with torsion $D * F + F \land *H = 0$. Torsion 3-form *H := d * Q (ordinary YM if Q co-closed).
- Action for YM with torsion is **finite** for instantons $S_{YM} + S_{CS} = \int_{\mathcal{M}} \text{Tr} \{F \wedge *F + (-1)^{d-3}F \wedge F \wedge *Q\} < \infty$
- Torsion appears naturally in string theory ($H \leftrightarrow NS$ flux)

Instantons in d = 4Instantons in d > 4New solutions @ $O(\alpha')$

Yang-Mills instantons in d > 4 — continued

Alternative definitions

- $F \cdot \epsilon = 0$ (the defn I gave earlier!)
- $F \in \mathfrak{g}$ (often in math. lit., $\mathfrak{g} = \text{Lie alg. of structure group } G$)
- In general: $F \cdot \epsilon = 0 \implies F \in \mathfrak{g} \implies *F = -(*Q) \wedge F$

- Which manifolds admit a globally well-defined 4-form Q? $\rightarrow G$ structure manifolds (i.e. manifolds with weak special holonomy), e.g. [Berger (1955); Bär (1993)]
 - SU(3) structure in d = 6
 - G_2 structure in d = 7
 - Spin(7) structure in d = 8

Instantons in d = 4Instantons in d > 4New solutions @ $\mathcal{O}(\alpha')$

Example

Instanton solution on (cylinder over) compact nearly Kähler X_6

 SU(3) structure on X₆ characterized by globally well-defined real 2-form J and complex 3-form Ω = Ω₊ + iΩ₋

$$\begin{split} \mathrm{d}J &= -\frac{3}{2}\,\mathrm{Im}(W_1\bar{\Omega}) + W_4 \wedge J + W_3 \ ,\\ \mathrm{d}\Omega &= W_1 J \wedge J + W_2 \wedge J + \bar{W}_5 \wedge \Omega \ . \end{split}$$

- 5 intrinsic torsion classes, e.g.
 - $W_1 = \ldots = W_5 = 0 \Leftrightarrow CY_3 (dJ = 0 \& d\Omega = 0)$
 - $W_2 = \ldots = W_5 = 0 \Leftrightarrow$ nearly Kähler

• Now, specialize to **NK** X_6 with $W_1^+ = 2$, $W_1^- = 0$, i.e.

$$dJ = 3\Omega_- , \quad d\Omega_+ = 2J \wedge J .$$

• Examples: 4 homogeneous spaces [Butruille (math/0612655)] $S^6 = G_2/SU(3), \mathbb{F}^3 = SU(3)/U(1)^2,$ $\mathbb{CP}^3 = Sp(2)/Sp(1) \times U(1), S^3 \times S^3 = SU(2)^3/SU(2)_{diag}$

Instantons in d = 4Instantons in d > 4New solutions @ $O(\alpha')$

Example — continued

• On X_6 always **2 real Killing spinors** η_{\pm} of opposite chirality

$${}^{\rm LC}\nabla_u\eta_{\pm}=\mp\frac{{\rm i}}{2}\gamma_u\eta_{\pm}\;.$$

• Important observation: $P_{uvw}\gamma^{vw}\eta_{\pm} = 4i\gamma_u\eta_{\pm}$ (with $P := \Omega_+$)

Definition

Connection $^{can}\nabla$ on G structure manifold is **canonical** if it has holonomy G and torsion totally anti-symmetric w.r.t. some G-compatible metric.

• Here: ${}^{\operatorname{can}}\Gamma_{uv}^{w} = {}^{\operatorname{LC}}\Gamma_{uv}^{w} + \frac{1}{2}P_{uvw}\left({}^{\operatorname{can}}\nabla_{u}v^{v} = \partial_{u}v^{v} + {}^{\operatorname{can}}\Gamma_{uw}^{v}v^{w}\right)$ • $\begin{cases} {}^{\operatorname{can}}\nabla\eta_{\pm} = 0 & (\operatorname{Hol}({}^{\operatorname{can}}\nabla) = SU(3); \operatorname{note:} {}^{\operatorname{LC}}\nabla\eta_{\pm} \neq 0) \\ T^{u} = \frac{1}{2}P^{u}{}_{vw}e^{v} \wedge e^{w} \end{cases}$

Instantons in d = 4Instantons in d > 4New solutions @ $\mathcal{O}(\alpha')$

Example — continued

Back to instanton equation:

- What is $Q? \rightarrow Q = *J = \frac{1}{2}J \wedge J$
- $*F = -J \wedge F \Leftrightarrow (F \in \Omega^{1,1} \text{ and } J \lrcorner F = 0) (\mathsf{DUY}; \text{ herm. YM})$
- Important: ^{can} ∇ is an instanton on X_6 [Harland, Nölle (1109.3552)]
- Consider cylinder over NK coset, $Z(K/H) = \mathbb{R} \times (K/H)$, with metric $g_7 = d\tau \otimes d\tau + g_6$
- SU(3) structure on K/H lifts to G_2 structure on Z(K/H)

 $\varphi = \mathsf{d}\tau \wedge J + \Omega_{-} , \quad \Phi := *_7 \varphi = \mathsf{d}\tau \wedge \Omega_{+} + \frac{1}{2}J \wedge J .$

• In general, G_2 structure equations:

$$\begin{split} \mathsf{d}_7 \varphi &= \tau_0 \Phi + 3\tau_1 \wedge \varphi + *_7 \tau_3 \;, \\ \mathsf{d}_7 \Phi &= 4\tau_1 \wedge \Phi + \tau_2 \wedge \varphi \;. \end{split}$$

• Here: (loc.) conformally parallel G_2 structure $(\tau_1 = -d\tau)$

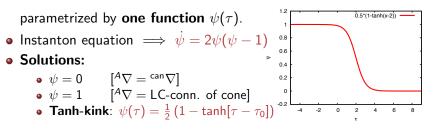
Instantons in d = 4Instantons in d > 4New solutions @ $O(\alpha')$

Example — continued

[Harland, Nölle (1109.3552); AH, Lechtenfeld, Musaev (1409.0548)]

- Recall: coset $X_6 = K/H$
- Lie algebra decomposes: $\mathfrak{k} = \mathfrak{h} \oplus \mathfrak{m}$
- Lie algebra generators of \mathfrak{k} split: $\{I_A\} = \{I_i\} \cup \{I_u\}$
- Ansatz for instanton connection on Z(K/H)

$${}^{A}
abla = {}^{\mathsf{can}}
abla + \psi(au)e^{u}I_{u} \; ,$$



Instantons in d = 4Instantons in d > 4New solutions @ $\mathcal{O}(\alpha')$

-20

20

NK DW solutions @ $\mathcal{O}(\alpha')$

[Harland, Nölle (1109.3552); Lukas et.al. (1210.5933); AH et.al. (1202.5046, 1409.0548)]

• Ansatz: $\mathcal{M} = \mathbb{R}^{1,2} \times \mathbb{R} \times X_6$

$$\begin{split} \hat{g} &= \eta_{\alpha\beta} dx^{\alpha} dx^{\beta} + e^{2f(\tau)} \left(d\tau^2 + g_{uv}(x^w) dx^u dx^v \right) ,\\ -\hat{\nabla} &= {}^{\mathsf{can}} \nabla + \psi_1(\tau) e^u I_u , \end{split}$$

$${}^{A}\hat{
abla} = {}^{\mathsf{can}}
abla + \psi_2(au) e^u I_u$$

Solution:

$$\hat{H} = -\frac{\alpha'}{4} (\psi_1^2 (2\psi_1 - 3)) - \psi_2^2 (2\psi_2 - 3)) \Omega_+ ,$$

$$\phi = \phi_0 + 2(f - \tau) ,$$

$$\hat{\phi} = \frac{2(\tau - \tau)}{2} + \frac{\alpha'}{4} + \frac{\alpha'}{40} - \frac{1}{50} + \frac{1}{50$$

-40

 $e^{2t} = e^{2(\tau - \tau_0)} + \frac{\alpha'}{4} (\psi_1^2 - \psi_2^2)$ with $\psi_{1,2} \in \{0, 1, \text{tanh-kink}\}$.

• 8 distinct cases, e.g. $\psi_1 = 1$, $\psi_2 = tanh-kink$

Conclusions

Summary

- $\left(\mathsf{Pert.} \ \mathcal{N} = 1/2 \ \mathsf{DW} \right) + \left(\mathsf{non-pert.} \ \mathsf{effects} \right) \rightarrow \left(\mathcal{N} = 1 \ \mathsf{Mink.} \right)$
- First two BPS eqs. \implies SU(3) str. on X_6 , G_2 str. on $\mathbb{R} \times X_6$
- @ $\mathcal{O}((\alpha')^0)$: $\hat{F} = 0$ and e.g. (NK with $\phi = \text{const.}$, $\hat{H} = 0$) or (CY w/ flux)
- $\mathcal{O}(\alpha')$: $\hat{\mathcal{F}} \cdot \epsilon = 0 \implies$ higher-dim. YM instantons
- Find explicit instantons on $\mathbb{R} \times NK$ which have **tanh-kink** shape and are useful for constructing full $\mathcal{O}(\alpha')$ heterotic domain wall solutions

Outlook

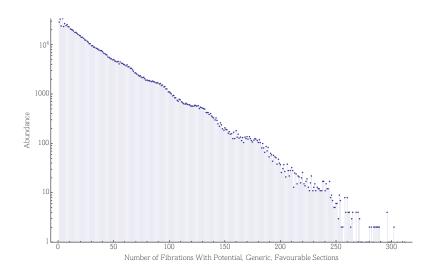
- Recently obtained new instantons (and non-instanton YM configs) on $\mathbb{R} \times X_7$, where X_7 has G_2 str. or even SU(3) str. (to appear soon)
- Qu.: embed into het. SUGRA as new (non-)SUSY solns.?

Thank you for your attention.

Backup slides

Instantons in d = 4Instantons in d > 4New solutions @ $\mathcal{O}(\alpha')$

More about sections



Instantons in d = 4Instantons in d > 4New solutions @ $\mathcal{O}(\alpha')$

Dynamic SU(3) structure on X_6

- From first two BPS eqs. (restore y-dependence of J, Ω):
 - $$\begin{split} \mathsf{d}J &= \Omega'_{-} 2\phi'\Omega_{-} *H , \qquad \mathsf{0} &= *\phi' + \frac{1}{2}H \wedge \Omega_{-} , \\ J \wedge \mathsf{d}J &= \mathsf{0} , \qquad \qquad \mathsf{0} &= \frac{1}{2}H_y \wedge \Omega_{-} \frac{1}{2}H \wedge J , \\ \mathsf{d}\Omega_{+} &= J \wedge J' \phi'J \wedge J , \qquad \mathsf{0} &= \Omega_{+} \wedge H + \frac{1}{2}H_y \wedge J \wedge J , \\ \mathsf{d}\Omega_{-} &= *H_y , \end{split}$$

with $d_7\omega = d\omega + dy \wedge \omega'$, $\hat{\phi} = \phi(y)$ and $\hat{H} = H + dy \wedge H_y$.

Generalization of Hitchin flow equations for dynamic SU(3) structure — common in d = 4 BPS DW solutions of d = 10 SUGRA theories [Mayer, Mohaupt (hep-th/0407198); Louis, Vaulà (hep-th/0605063); Smyth, Vaulà (0905.1334)]

• For
$$\hat{H} = 0$$
 and $\phi = 0$, restore original Hitchin flow equations:

$$egin{array}{lll} J\wedge dJ=0\ , & dJ=\Omega'_{-}\ , \ d\Omega_{-}=0\ , & d\Omega_{+}=J\wedge J'\ . \end{array}$$