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@ Brief advert for recent classification result for certain family of
Calabi-Yau 4-folds

@ Main part
o N = % domain wall solutions of heterotic supergravity
o Lift to O(«’) and appearance of higher-dim. YM instantons

@ Conclusions
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Motivation

o CY 4-folds are important objects in string theory. E.g.
o to build A/ =1, d = 4 string vacua based on F-theory
o dualities (M <= F, het. ST < F)
e mirror symmetry

@ Our goal: systematically explore & map out F-CY,
“landscape” (as opposed to “geometric engineering”)

@ Start: find description of all CY 4-folds which are complete
intersections in products of projective spaces (CICYs)

o Arguably “simplest” explicit CY constructions =
many properties relatively straightforward to compute

e Analog of very useful list of 7890 CICY 3-folds [Hiibsch (1987);
Green et. al. (1987); Candelas et. al. (1988)]

o Generating equivalent 4-fold list requires qualitative and
quantitative modifications ...
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Example

e An example of a CICY 4-fold configuration matrix (id 244)

111 1
2|11 2
3|0 4

o Represents a family of CY 4-folds defined by the solutions to
the polynomials

j 8
pP1 = Z CiaX’ya ) Z dlaba BrysX yaybzaz z! 26
o in the ambient space P! x P? x P3

e Simplest case: “sextic” [5/6]
(4d analog of famous “quintic”)
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Generalities

o (Family of) CICYs described by configuration matrix:

m q% o q}<
[nla] = ;
nm|qy" ... qg

o Ambient space: P™ x --- X P
o CICY: common zero locus of homogeneous polynomials
{pa}azl...K
e Many properties of manifold encoded just in [n|q], e.g.

o Dimension of the complete intersection: >~ n, — K =4
o Configuration is Calabi-Yau (¢ = 0) if: 25:1 q, =n+1
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Results

e Complete classification (~ 1 yr. on large computer cluster)
o Result: list of 921,497 configuration matrices
e Same code correctly reproduces old CICY 3-fold list
o Counting of product manifolds (72 x CY3, T* x K3, T8,
K3 x K3) comes out correctly
@ Some redundancies are still present
o distinguish via topological invariants

- ; = at least 36,779 different topologies
N "f-,';-._. Data and code in
P "'{,;‘, ) arXiv:1303.1832 or at
i "-::,,:._- ) http://cicy4folds.hauptl.de
z '-,_0’."-' .
0 TR
A :‘
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Elliptic Fibrations

o F-theory usually defined on elliptically fibered CY 4-fold

@ No known general (& for our purpose practical) criterion for
when 4-fold is elliptically fibered, but ...

T2
o for CICYs, 3 “obvious elliptic 510
fibration” (=OEF) struct.: [ }
@l2s
base [4]2]
_ 2
@ More generally: [ A ‘ Fl=T

418 7]
Base:[.Az‘B]w T

@ Scan of all CICY 4-folds: 99.95% are OEF
(~ 1/2 yr. on computer cluster)
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Elliptic Fibrations — continued
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e In total: ~ 5 x 107 fibrations

o All manifolds with h''! > 12 have at least one such fibration
(cf. similar observation for ell. fib. CY 3-folds [Taylor
(1205.0952); Johnson, Taylor (1406.0514)])

o Can test some necc. conditions for section to exist (existence
as a generic element of “favourable” divisor i.e. descending
from hyperplanes in the ambient space)

Computer scan: ~ 2.6 x 107 (~ 52%) pass test
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Motivation

@ One classic route to N =1, d = 4 physics from string theory
is M10 = R1L3 x CY3, but difficult to stabilize all moduli

o Better: CY3 — more general SU(3) structure mfld (+ flux)

@ But then: in general, no perturbative N’ =1 Minkowski vacua
exist (except “Strominger system”)

e Phenomenologically: want vacuum (close to) Minkowski after
taking into account perturbative and non-perturbative effects

@ Non-perturbative corrections to superpotential required in
many moduli stabilization scenarios — too restrictive to
demand existence of Minkowski vacuum in their absence

e E.g.
(Pert. A= 1/2 DW| + (non-pert. effects| — (A" = 1 Mink.|

such as gaugino condensation, (or close to)
membrane instantons

o Balancing — if possible — requires fine tuning similar to KKLT
(PE anomalously small) or LVS (NPE anomalously large)
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Heterotic supergravity

e Ingredients on d = 10 manifold M:
e Lorentzian metric g
Neveu-Schwarz 3-form H € Q3(M)
dilaton ¢ : M — R
gauge connection AV with gauge group SO(32) or Es x Eg

@ Anomaly cancellation condition leads to Bianchi identity:

at O(c) (here: R-e=0). At lowest order: dH = 0.
e BPS equations (SUSY background):
e gravitino: ~Ve =0
o dilatino®: (dd — LA -c =0
o gauginol: F-e=0 = (later: YM instantons)

} — G structure

1 Def": w-e= ﬁwil_“,-p'y"l ---ylpe, where v are Clifford matrices ({y',7/} = 2g¥)
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Ansatz

Let's consider M = R1? x R x X5, with Xg compact
Metric
g = Ak (Mapdx@dx? + e?A(x)dx3dx3 + guv(x™)dx"dx")
d = 1+ 2 domain wall. WV: {x}, trans.: {x™} = {x3,x"}
Killing spinor: ¢(x®, x™) = p(x*) @ n(x™) @ 6
p has two real components = our background preserves
two real supercharges (N = % SUSY in d = 4 terminology)
@ Lorentz invariance on d = 1 4 2 domain wall world-volume
= 900 =0, Hamn =0, Hopn =0
o Simplification in this talk: A=0, A =0, /:Ia/37 =0
[Lukas, Matti (1005.5302); Gray, Larfors, Liist (1205.6208);
AH, Lechtenfeld, Musaev (1409.0548)]
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G, structure on X7 = R x Xj

o Consider d = 7 part of previous ansatz:
X7 =R x X, g7=dx3dx3+ g, (x™)dx"dx"

@ On X7 we can construct a globally well-defined 3-form
€ Q3(X7) and its d = 7 Hodge dual & := x7¢ € Q4(X7)

Omnp = —ir]Trmnpn , D mnpg = 'r]Trmnpq*r} .

with {Fm, Tn} = 2(g7)mn and Ty, = Ty Ul
o First two BPS equations then imply

d7gp = 2d76 A o — x7H , s7d7p=—LH N,
d;® =2d7p A D, 0=HA®.

o First two BPS equations — G structure on X7
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SU(3) structure on Xg

o Decompose 7 into two d = 6 spinors of definite chirality:
n=J5(n+ +1-)

@ They still depend on non-compact transverse direction y := x3

@ For every fixed value of y, have globally well-defined real
2-form J and complex 3-form Q = Q4 +iQ_

Quuw = 7]1’\/uvw7]7 ) Jw = :FUL’Yuvni .

@ Specifies a static SU(3) structure on X
@ G structure on X7 <» SU(3) structure on Xg

e=dy AJ+Q_, S =dy AQ+IJAJ.
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Zeroth order nearly Kahler solutions

Bl @ O((«/)°) is simply dH =0
Gauge sector trivial (only condition F.e=0, solved by F = 0)

Restrict SU(3) structure to nearly Kahler (torsion class W)
dd=-3W Qu +3wW Q. , dQ=WiJnJ.

BPS + Bl = H=-1¢/Q, +3W, Q_—2W, JAdy and

0=¢'Wi" —3(Wy)?,
0=0¢"+ %((/)/)2 + Bo'w,
0=¢'a—3(W) —2wW,/ Wy — 26w, .

2 special solutions: [Lukas et.al. (1005.5302); Liist et.al. (1205.6208)]
o NK with ¢ = const., H =0 (W;" = any, W;” =0, a = any)
o CY with flux (¢ = Zlog(ay + b), Wy =0, « =0)



Lift to O(«/) and appearance
of higher-dim. YM instantons



Instantons in d = 4
Instantons in d > 4
Lift to O(a’) & YM instantons New solutions @ O(a’)

Appearance of higher-dim. YM instantons

Need to deal with non-trivial Bl:

/

df = %Tr(ﬁAﬁ—F?AF‘\’)
ngeneral # 0 and thus need to solve

F.e=0

Solutions to F - ¢ = 0 are called YM instantons

Originally YM instantons first appeared in a different
context ...



Instantons in d = 4
Instantons in d > 4
Lift to O(a’) & YM instantons New solutions @ O(a’)

Yang-Mills instantons in d = 4

A (classical) Yang-Mills instanton is a gauge connection on
Euclidean M*, whose curvature F is self-dual, i.e. xF = F.

o Solutions of YM-eq. (02 DF =D+ F = D« F = 0)

o Absolute minima of YM-action Sy = 5. [, Tr(F A #F)
within their topological type

@ 1st order eq. easier to solve than 2nd order YM-eq.

o Localized in space & time (when Wick rotated
M* — M*3), hence called “instanton” or “pseudoparticle”

v

[Belavin, Polyakov, Schwarz, Tyupkin (1975); Atiyah, Hitchin, Singer (1977); Atiyah,
Drinfeld, Hitchin, Manin (1977), .. ]
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Applications & Example

e Maths: classification of 4-manifolds (e.g. Donaldson
invariants [Donaldson (1983)])
@ Physics: [t Hooft (1976); Jackiw, Rebbi (1976); Callan et.al. (1978), .. ]
e Instantons are critical points of YM-action
e Appear in Pl as leading quantum corrections to class. behavior
e —> learn about structure of YM-vacuum

@ 1st example: BPST inst. [Belavin, Polyakov, Schwarz, Tyupkin (1975)]
M =R* G =SU(2), x* = ({x'}ic123,x*)

r2

A, = mg_l(x)aug(x) )

4 i g
with r? =37 (x")?, g(x) = M o' = Pauli matrices.
Note: Sym = 86—“22. Pl e~ S — = (87%)/€
(no pert. exp. in e = non-pert.)




Instantons in d = 4
Instantons in d > 4
Lift to O(a’) & YM instantons New solutions @ O(a’)

Yang-Mills instantons in d > 4

Definition

In higher dimensions, the instanton equation is generalized to
xF=—(xQ)AF,

with some globally well-defined 4-form Q.

[Corrigan, Devchand, Fairlie, Nuyts (1983)]

Properties
@ Need additional structure on M to have @ <« G structure

@ Instanton eq. = YM with torsion D« F + F A «H = 0.
Torsion 3-form «H := d « @ (ordinary YM if Q co-closed).

@ Action for YM with torsion is finite for instantons
Sym+Scs = [y Tr{FA*F + (1) 3FAF A%Q} < o0
@ Torsion appears naturally in string theory (H <> NS flux)
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Yang-Mills instantons in d > 4 — continued

Alternative definitions

@ F-¢=0 (the defn | gave earlier!)
e F € g (often in math. lit.,, g = Lie alg. of structure group G)
@ Ingeneral: F-e=0 — Feg — «xF=—(xQ)AF

@ Which manifolds admit a globally well-defined 4-form Q7
— G structure manifolds (i.e. manifolds with weak special
holonomy), e.g. [Berger (1955); Bar (1993)]

o SU(3) structure in d =6
o Gy structureind =7
e Spin(7) structure in d =8
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Example

Instanton solution on (cylinder over) compact nearly Kahler Xg

@ SU(3) structure on Xg characterized by globally well-defined
real 2-form J and complex 3-form Q = Q, +iQ_

dJ= -3 Im(WiQ) + Wa A J + W5,
dQZWlJ/\J+W2/\J+\/_V5/\Q.

@ 5 intrinsic torsion classes, e.g.
o Wi=...=Ws=0x CY; (dJ=0& dQ = 0)
o Wr=...= Ws =0 < nearly Kahler
o Now, specialize to NK X5 with W™ =2, W, =0, i.e.

dJ=3Q_, dQ, =2JAJ.

o Examples: 4 homogeneous spaces [Butruille (math/0612655)]
S® = G,/SU(3), F3 = SU(3)/U(1)?,
CP3 = Sp(2)/Sp(1) x U(1), S3 x S3 = SU(2)3/SU(2)diag
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Example — continued

@ On Xg always 2 real Killing spinors 7. of opposite chirality
LV e = Favums -

o Important observation: P, V""" 1+ = 4iv,n+
(with P :=Qy)

Definition

Connection "V on G structure manifold is canonical if it has
holonomy G and torsion totally anti-symmetric w.r.t. some
G-compatible metric.

o Here: <My, =LCrw 1P, ("V,v¥ = Oyv" + TY, v"W)
o Ve =0 (Hol(2"V) = SU(3); note: LCTnL #0)
TY = %P“\,We" N e
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Example — continued

Back to instanton equation:
o Whatis Q? = Q=x+J=3JAJ
o xF = —JAF < (F € Q4 and JUF = 0) (DUY; herm. YM)
o Important: “"V is an instanton on Xg [Harland, Nélle (1109.3552)]

e Consider cylinder over NK coset, Z(K/H) =R x (K/H),
with metric g7 = dT ® d7 + gp

SU(3) structure on K/H lifts to Gy structure on Z(K/H)

e=drANJ+Q_, ¢::*7g0:d7/\§2++%JAJ.

In general, G, structure equations:

d7o =10P + 311 A+ %773,
d7¢ =4 AP+ Ap.

Here: (loc.) conformally parallel G, structure (73 = —d7)
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Example — continued

[Harland, Nolle (1109.3552); AH, Lechtenfeld, Musaev (1409.0548)]

o Recall: coset Xg = K/H
o Lie algebra decomposes: £t =h P m
o Lie algebra generators of € split: {Ia} = {/;} U{l,}
e Ansatz for instanton connection on Z(K/H)
AV =AY 4 4(r)ely
parametrized by one function (7). N 0 (rammte2) ——

@ Instanton equation — b= 2¢(¢p — 1) o
@ Solutions: i Zj

° ,lp — 0 [Av — canv] 0.2

o p=1 [V = LC-conn. of cone] .

o Tanh-kink: ¢)(7) = % (1 —tanh[r —7o])  + = o 2o e e
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NK DW solutions @ O(a')

[Harland, Nélle (1109.3552); Lukas et.al. (1210.5933); AH et.al. (1202.5046, 1409.0548)]

o Ansatzz: M =R xR x X

& = Napdx®dx? + 27 (d72 + g,y (x")dx“dx") |

“V =Y +q(1)ell,

AV = @V + 4o (7)€ ], . 0
@ Solution: -40 -20 NE 40
A=—5 (Y201 - 3)
12 -30F 0 e
_ ey —
V5 (2hp — 3)) Q4 Y —
¢ =¢o+2(f —7), 5 )

e?f = &2(r—m) 4 % (1/)1 — 1/12) with 912 € {0, 1,

e 8 distinct cases, e.g. 1 =1, ¥» = tanh-kink

tanh-kink}. H



Conclusions

° {Pert. N =1/2 DW} + [non—pert. effects} — (J\/’ =1 I\/Iink.}

o First two BPS eqs. = SU(3) str. on X, Gy str. on R x X

o @ O(()°): F =0 andeg. (NK with ¢ = const., H=0) or
(CY w/ flux)

0 @O(a/): F-e=0 = higher-dim. YM instantons

@ Find explicit instantons on RxNK which have tanh-kink

shape and are useful for constructing full O(«’) heterotic
domain wall solutions

V.

@ Recently obtained new instantons (and non-instanton YM
configs) on R x X7, where X7 has G str. or even SU(3) str.
(to appear soon)

@ Qu.: embed into het. SUGRA as new (non-)SUSY solns.?




Thank you for your attention.
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More about sections
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Dynamic SU(3) structure on Xg

e From first two BPS egs. (restore y-dependence of J, Q):
dJ=Q —2¢/Q_ —xH, 0=x¢'+3HAQ_,

JAdJ=0, 0=3H,AQ_—3HAJ,
A, =JANS =@ INJ, 0=Q AH+LH, AINT,
dQ_ = —-xH,,

with d7w = dw +dy Aw’, ¢ = ¢(y) and H = H+dy A H,.
o Generalization of Hitchin flow equations for dynamic
SU(3) structure — common in d = 4 BPS DW solutions of
d = 10 SUGRA theories [Mayer, Mohaupt (hep-th/0407198); Louis,
Vaula (hep-th/0605063); Smyth, Vaula (0905.1334)]
e For H=0 and ¢ = 0, restore original Hitchin flow equations:

JAdJ=0, dJ=q
dQ_ =0, dQy = JAJ .
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